X
تبلیغات
رایتل

علم ریاضی

این وبلاگ جهت استفاده علاقمندان به ریاضی ایجاد شده است.
پنج‌شنبه 28 دی‌ماه سال 1391

حلقه ها

حلقه ها

حلقه گروهی آبلی جمعی بانضمام نیمگروهی ضربی است که ضرب نسبت به جمع توزیع‌پذیراعداد صحیح این ویژگی را دارند. اگر نیمگروه ضربی مونوئید باشد حلقه را یکدار گوییم و اگر جابجایی باشد حلقه را جابجایی گوییم باشد. مثلاً
+ نوشته شده در پنجشنبه سیزدهم تیر 1387ساعت 12:45 بعد از ظهر توسط مجید | نظر بدهید

نظریه حلقه ها- اعداد صحیح

مجموعهٔ اعداد صحیح به اجتماع مجموعهٔ اعداد طبیعی، قرینهٔ اعداد طبیعی ، و {0} (مجموعهصفر عضو آن است) گفته می‌شود. در ریاضیّات، معمولاً این مجموعه را با Z یا \mathbb{Z}شمارای نامتناهی‌ست. ای که تنها عدد (ابتدای کلمه آلمانی Zahlen به معنی اعداد) نشان می‌دهند. همانند مجموعهٔ اعداد طبیعی، مجموعهٔ اعداد صحیح نیز یک مجموعهٔ

شاخه‌ای از ریاضیّات که به مطالعهٔ اعداد صحیح می‌پردازد، نظریهٔ اعداد نام دارد.

خواص جبری

همانند اعداد طبیعی، \mathbb{Z} نیز نسبت به دو عمل جمع و ضرب بسته است. این بدان معناست که حاصل جمع و حاصل ضرب دو عدد صحیح، خود، یک عدد صحیح است. بر خلاف مجموعهٔ اعداد طبیعی، از آنجا که اعداد صحیح منفی، و به ویژه، عدد صفر هم به \mathbb{Z} تعلق دارند، این مجموعه، نسبت به عمل تفریق نیز بسته است. اما \mathbb{Z} تحت عمل تقسیم بسته نیست، زیرا خارج قسمت تقسیم دو عدد صحیح، لزوما عددی صحیح نخواهد بود.

زیر گنجانیده شده است (در اینجا b ،a، و c اعداد صحیح دل‌خواه هستند:)


جمعضرب
بسته بودن:a + b یک عدد صحیح استa × b یک عدد صحیح است
شرکت پذیری:a + (b + c) = (a + b) + ca × (b × c) = (a × b) × c
تعویض پذیری:a + b = b + aa × b = b × a
وجود یک عنصر واحد:a + 0 = aa × 1 = a
وجود یک عنصر عکس:a + (−a) = 0
توزیع پذیری:a × (b + c) = (a × b) + (a × c)
نداشتن مقسوم علیه‌های صفر:
اگر ab = 0، آنگاه a = 0 یا b = 0

مطابق جدول بالا، خواصّ بسته بودن، شرکت پذیری و جابه جایی (یا تعویض پذیری) نسبت به هر دو عمل ضرب و جمع، وجود عضو همانی (واحد، یا یکّه) نسبت به جمع و ضرب، وجود عضو معکوس فقط نسبت به عمل جمع، و خاصیّت توزیع پذیری ضرب نسبت به جمع از اهمیت برخوردارند.

در مبحث جبر مجرد، پنج خاصیّت اوّل در مورد جمع، نشان می‌دهد که مجموعهٔ \mathbb{Z} به همراه عمل جمع یک گروه آبلی است. امّا، از آن جا که \mathbb{Z} نسبت به ضرب عضو وارون (یا معکوس) ندارد، مجموعهٔ اعداد صحیح، به همراه عمل ضرب، گروه نمی‌سازد.

مجموعهٔ ویژگیهای ذکر شده حاکی از این است که \mathbb{Z}، به همراه عملیّات ضرب و جمع، یک حلقهمیدان نیست. مجموعهٔ اعداد گویا را باید کوچک‌ترین میدانی دانست که اعداد صحیح را در بر می‌گیرد. است، امّا، به دلیل نداشتن وارون ضربی،

اگرچه تقسیم معمولی در اعداد صحیح تعریف شده نیست، خاصیّت مهمّی در مورد تقسیم وجود دارد که به الگوریتم تقسیم مشهور است. یعنی به ازاء هر دو عدد صحیح و دل‌خواه a و b) b مخالف صفر)، q و r منحصر به فردی متعلق به مجموعه اعداد صحیح وجود دارد، به طوریکه: a = q.b + r که در این جا، q خارج قسمت و r باقیمانده تقسیم a بر b است. این کار اساس الگوریتم اقلیدسبزرگ‌ترین مقسوم علیه مشترک را تشکیل می‌دهد. برای محاسبه

همچنین در جبر مجرد، بر اساس خواصی که در بالا ذکر شد، \mathbb{Z} یک دامنه اقلیدسی است و در نتیجه \mathbb{Z} دامنه ایده‌آل اصلی می‌باشد و هر عدد طبیعی بزرگ‌تر از یک را می‌توان به طور یکتا به حاصل‌ضرب اعداد اوّل تجزیه کرد (قضیه اساسی علم حساب.)

نظرات (0)
نام :
ایمیل : [پنهان می ماند]
وب/وبلاگ :
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)