روزی معلم پای تابلو حد زیر را نوشت و از یکی از دانش آموزان خواست تا آن را محاسبه کند. برگرفته شده ازآموزش ریاضی چناران.
دانش آموز بی درنگ نوشت:
معلم با حیرت گفت:این چیست که نوشتی؟دانش آموز گفت:چون در مساله ی قبل داشتیم:
یک رابطه ی جالب
کافی است n ها را از صورت و مخرج با هم بزنیم.!!!
هانری پوانکاره ریاضی دان معروف فرانسوی است که در سال 1854 در خانواده ای به نام و سرشناس در شهر نانسی فرانسه به جهان قدم گذارد. از دوران کودکی فکرش سریعتر از کلمات کار می کرد در پنج سالگی به دیفتری مبتلا شد و در طی نه ماه حنجره اش از کار افتاد و همین مسئله باعث گوشه گیری او شد به طوری که در بازیها نمی توانست شرکت کند. همین موضوع باعث شد که افکارش را متمرکز کند. او از حافظه بسیار خوبی برخوردار بود از شانزده سالگی شوق ریاضیات در پوانکاره بوجود آمد. او کارهای ریاضی را در ذهنش انجام میداد بدون اینکه آنها را یادداشت کند.
فرضیه چهار رنگ چیست ؟
قضیه چهار رنگ به صورت ساده این است: یک نقشه داریم. ثابت کنید می توان کشورها را با 4 رنگ، رنگ کرد به صورتی که هر دو کشور مجاور ناهمرنگ باشند. این مسله برخلاف ظاهر ساده اش سال ها فکر دانشمندان را به خود مشغول داشت تا در حدود 1976 چند دانشمند بعد از این که 25 سال از عمرشان را وقف اثبات این نظریه کردند، توانستند ثابت کنند که اگر برای حدود 10000 نقشه (گراف) ای که لیست شده بودند این کار امکان پذیر باشد آنگاه برای همه ی نقشه ها این کار ممکن است. این تعداد نقشه با کمک کامپیوتر و برنامه ای که آن ها نوشته بودند ، طی روزها تلاش کامپیوتر حل شد. آن ها در واقع در ابتدا قصد استفاده از کامپیوتر را نداشتند ولی ناچار به این کار شدند. بعد کسانی پیدا شدند و گفتند این که نشد اثبات و این دو نفر کلی تلاش کردند که آن ها را قانع کنند که این هم اثبات است و از اثبات 1000 صفحه ای یک قضیه بدتر نیست. ولی هنوز هم دانشمندان در حسرت یک اثبات ساده برای این قضیه هستند. اثباتی که روی کاغذ باشد!
نکته ی دیگر این که این مسله با کمک نظریه گراف حل شد.
و اما صورت مساله:
xn + yn = zn جواب ندارد.
در سال 1993 با استفاده از نظریه های پیشرفته اندرو وایلز حلی برای آن ارائه کرد که دارای مشکلی بود ولی در سپتامبر 1994 اشکال این حل نوسط خود وایلز وباهمکاری یکی از همکارانش به نام تیلر برطرف شد.
Group
A group is a pair (G, *) , where G is a non-empty set and " * '' is binary operation on G, that holds the following conditions.
Usually, the symbol " * '' is omitted and we write ab for a*b . Sometimes, the symbol " +'' is used to represent the operation, especially when the group is abelian.
It can be proved that there is only one identity element, and that for every element there is only one inverse. Because of this we usually denote the inverse of a as a-1 or –a when we are using additive notation. The identity element is also called neutral element due to its behavior with respect to the operation, and thus a-1 is sometimes (although uncommonly) called the neutralizing element of a.
Groups often arise as the symmetry groups of other mathematical objects; the study of such situations uses group actions. In fact, much of the study of groups themselves is conducted using group actions.
یکی از معمول ترین سئوالهائی که مطرح می شود این است که: چه کسی صفر را کشف کرد؟ البته برای جواب دادن به این سئوال بدنبال این نیستیم که بگوئیم شخص خاصی صفر را ابداع و دیگران از آن زمان به بعد از آن استفاده می کردند.
اولین نکته شایان ذکر در مورد عدد صفر این است که این عدد دو کاربرد دارد که هر دو بسیار مهم تلقی می شود یکی از کاربردهای عدد صفر این است که به عنوان نشانه ای برای جای خالی در دستگاه اعداد (جدول ارزش مکانی اعداد) بکار می رود. بنابراین در عددی مانند 2106 عدد صفر استفاده شده تا جایگاه اعداد در جدول مشخص شود که بطور قطع این عدد با عدد 216 کاملاً متفاوت است. دومین کاربرد صفر این است که خودش به عنوان عدد بکار می رود که ما به شکل عدد صفر از آن استفاده می کنیم.
ادامه مطلب ...شاید تا کنون بارها نام فراکتالها یا برخالها را شنیده باشید؛ موجوداتی که به عنوان اصلی ترین بازیگران هندسه منتج از نظریه آشوب شناخته می شوند.
این هندسه ویژگی های منحصر به فردی دارد، که می تواند توجیه گر بسیاری از رویدادهای جهان اطراف ما باشد، اما ویژگی اصلی که در تعریف آشوب و بالطبع هندسه آن وجود دارد، باعث می شود ما استفاده ویژه ای از این سیستم ببریم.
این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نام می برند، اما هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی کردند.
برای آن که درک بهتری نسبت به فراکتالها داشته باشیم ، بد نیست نگاه مختصری به آشوبی بیندازیم ، که فراکتال ها فضای هندسی آنها را تعریف می کند.
سودوکو، مخفف عبارت ژاپنی سوجی وا دوکوشین نی کاگیرو به معنی «ارقام باید تنها باشند» است.
هر چند این بازی برای اولین بار در یک مجله پازل آمریکایی در سال ۱۹۷۹ انتشار یافت، ولی انتشار آن به طور مستمر و پیگیر برای نخستین مرتبه بر میگردد به ژاپن در ۱۹۸۶ و از سال ۲۰۰۵ این سرگرمی به محبوبیت جهانی دست یافت و نخستین مسابقه ملی آن در سال ۲۰۰۸ در فیلادلفیا، آمریکا برگزار شد.
در ایران برای اولین بار روزنامه همشهری در سال ۱۳۸۵ ه.ش اقدام به چاپ سودوکو به صورت روزانه کرد.
سوال و راهنمای تصحیح امتحان نهایی
سال سوم متوسطه شیوه سالی - واحد (روزانه) ونیم سالی - واحدی(بزرگسالان) و داوطلبان آزاد
رشته ریاضیفیزیک
درنوبت امتحانی (شهریورماه) سالتحصیلی ۱۳۹۱-۱۳۹۰
سوال و راهنمای تصحیح امتحان نهایی
سال سوم متوسطه شیوه سالی - واحد (روزانه) ونیم سالی - واحدی(بزرگسالان) و داوطلبان آزاد
رشته ریاضیفیزیک
درنوبت امتحانی (شهریورماه) سالتحصیلی ۱۳۹۱-۱۳۹۰
سال ها پیش در یکی از کلاس های ریاضیات مدارس آلمان، آموزگار برای اینکه مدتی بچه ها را سرگرم کند و به کارش برسد؛ از آنها خواست تا مجموع اعداد از یک تا صد را حساب کنند. پس از چند دقیقه یکی از شاگردان کلاس گفت: مجموع این اعداد را پیدا کرده و حاصل عدد ۵۰۵۰ می شود. با شنیدن این عدد معلم با حیرت فراوان او را به پای تخته برد تا روش محاسبه خود را توضیح دهد. به نظر شما این شاگرد باهوش که بعدها یکی از بزرگ ترین و معروف ترین ریاضیدانان دنیا شد، چه روشی را به کار بست؟ او اعداد یک تا صد را به ردیف پشت سرهم نوشت، سپس بار دیگر همین اعداد را بالعکس، این بار از صدتا یک، درست در ردیف زیرین اعداد قبلی نوشت. طوری که هر عدد زیر عدد ردیف بالاتر قرار گرفت.وی مشاهده کرد که مجموع هر کدام از ستون های به وجود آمده ۱۰۱ است. سپس نتیجه گرفت که صد تا عدد ۱۰۱ داریم که حاصل مجموع آنها می شود ۱۰۱۰۰=۱۰۱*۱۰۰. پس از آن تنها کافی بود که این مجموع به دست آمده نصف شود یعنی:
۵۰۵۰=۲/۱۰۱۰۰
در قرن نوزدهم دو ریاضیدان بزرگ به نام «لباچفسکى» و «ریمان» دو نظام هندسى را صورت بندى کردند که هندسه را از سیطره اقلیدس خارج مى کرد. صورت بندى «اقلیدس» از هندسه تا قرن نوزدهم پررونق ترین کالاى فکرى بود و پنداشته مى شد که نظام اقلیدس یگانه نظامى است که امکان پذیر است.این نظام بى چون و چرا توصیفى درست از جهان انگاشته مى شد. هندسه اقلیدسى مدلى براى ساختار نظریه هاى علمى بود و نیوتن و دیگر دانشمندان از آن پیروى مى کردند. هندسه اقلیدسى بر پنج اصل موضوعه استوار است و قضایاى هندسه با توجه به این پنج اصل اثبات مى شوند. اصل موضوعه پنجم اقلیدس مى گوید: «به ازاى هر خط و نقطه اى خارج آن خط، یک خط و تنها یک خط به موازات آن خط مفروض مى تواند از آن نقطه عبور کند.»
ادامه مطلب .... سرفصل دروس کارشناسی ارشد ریاضی محض
2. سرفصل دروس کارشناسی ارشد ریاضی کاربردی
قضیه ی فشردگی حدود:
اگر آن گاه :
.(این قضیه برای حدهای یک طرفه و بی نهایت هم برقرار است.)
مثال: را بیابید.
با توجه به شکل زیر و استفاده از قضیه ی فشردگی ، نتیجه می شود که حد راست برابر 0 است.برای بررسی حد چپ،کافی است نیمه ی دیگر نمودار تابع را در نظر بگیریم که مشابها" نتیجه می شود که حد چپ نیز برابر 0 است و لذا حد مذکور برابر 0 است .
تمرین :حدود زیر را بیابید .(x عددی حقیقی و [y]معرف جز صحیح y است .)
برگرفته شده ازسایت دوست بزرگوارم استاد دادمنش
ریاضیات فازی یک فرا مجموعه از منطق بولی است که بر مفهوم درستی نسبی، دلالت می کند. منطق کلاسیک هر چیزی را بر اساس یک سیستم دوتائی نشان می دهد ( درست یا غلط، 0 یا 1، سیاه یا سفید) ولی منطق فازی درستی هر چیزی را با یک عدد که مقدار آن بین صفر و یک است نشان می دهد. مثلاً اگر رنگ سیاه را عدد صفر و رنگ سفید را عدد 1 نشان دهیم، آن گاه رنگ خاکستری عددی نزدیک به صفر خواهد بود. در سال 1965، دکتر لطفیزاده نظریه سیستمهای فازی را معرفی کرد. در فضایی که دانشمندان علوم مهندسی به دنبال روشهای ریاضی برای شکست دادن مسایل دشوارتر بودند، نظریه فازی به گونهای دیگر از مدلسازی، اقدام کرد.
سوال و راهنمای تصحیح امتحانات نهایی
سال سوم متوسطه شیوه سالی – واحد (روزانه) و نیم سالی واحدی (بزرگسالان)
رشتـههای فنـی و حرفهای
درنوبت امتحانی (شهریور ماه) سالتحصیلی ۱۳۹۱-۱۳۹۰
درنوبت امتحانی شهریورماه سالتحصیلی ۱۳۹۱-۱۳۹۰
سوال و راهنمای تصحیح امتحان نهایی