X
تبلیغات
رایتل

علم ریاضی

این وبلاگ جهت استفاده علاقمندان به ریاضی ایجاد شده است.
سه‌شنبه 28 آذر‌ماه سال 1391

نکات تستی فصل اول هندسه2

: اگر O نقطه دلخواه درون مثلث ABC باشد روابط زیر برقرار است:

الف) مجموع فاصله های نقطه O از سه رأس مثلث بیشتر از نصف محیط مثلث و کمتز از محیط آن است.

ب) مجموع فاصله های نقطه O از دو رأس مثلث بزرگتر از طول ضلع گذرنده از آن دو رأس و کوچکتر از مجموع طولهای دو ضلع دیگر است.

نکته: در هر چهارضلعی محدب مجموع اضلاع‏‏‏، بزرگ‏‏‏تر از مجموع قطرها است‏‏‏.

نکته: در هر مثلث مجموع اندازه‏‏‏های سه میانه، کوچک‏‏‏تر است از محیط مثلث و بیشتر از نصف محیط مثلث است.

نکته: اندازه میانه وارد بر هر ضلع مثلث بزرگتر از نصف تفاضل اندازه های دو ضلع دیگر و کوچکتر از مجموع اندازه های دو ضلع دیگر است.

نکته: اندازه میانه وارد بر هر ضلع مثلث بزرگتر از نصف تفاضل اندازه های دو ضلع دیگر و کوچکتر از مجموع اندازه های دو ضلع دیگر است.

نکته: مجموع میانه های وارد بر سه ضلع مثلث از محیط مثلث کمتر و از سه چهارم نصف محیط مثلث بیشتر است.

نکته: طول ضلع هر مثلث کمتر از مجموع طول های دو ضلع دیگر و بیشتر از تفاضل آن دو ضلع است.

نکته: مکان هندسی نقاطی که از سه ضلع مثلث به یک اندازه باشند چهار نقطه در صفحه مثلث است.( مراکز دایره محاطی )

نکته: مکان هندسی نقاطی از صفحه که از سه نقطه غیر واقع بر یک خط راست( سه رأس مثلث) به یک فاصله است مرکز دایره محیطی مثلث( نقطه همرسی عمودمنصف اضلاع مثلث) می باشد.

نکته: در هر مثلث اندازه ی زاویه ی بین ارتفاع نظیر یک ضلع و نیمساز داخلی زاویه ی مقابل به آن ضلع، برابر نصف قدرمطلق تفاضل اندازه ی دو زاویه دیگر مثلث است.

نکته: اندازه ی زاویه ی بین هر دو نیمساز داخلی در هر مثلث برابر است با مجموع 90 درجه با نصف زاویه داخلی سوم.

نکته: اگر a و b و c اندازه های اضلاع یک مثلث باشند. شعاع دایره محاطی و محیطی مثلث از روابط زیر بدست می آیند.

عبارتشعاع دایره محاطی و شعاع دایره محیطی مثلث را مشخص می کند ( P نصف محیط مثلث و Sمساحت آن مثلث

r=S/P

R=abc/4S یا

می باشد. )

نکته: در هر مثلث مجذورطول نیمساز هر زاویه(داخلی یا خارجی) برابر است با حاصل ضرب طول های دو ضلع آن زاویه منهای حاصل ضرب طول پاره خط هایی که آن نیمساز روی ضلع سوم ایجاد می کند.

توجه: بعضی از این نکات به عنوان مساله در کتاب درسی فصل۱ یا فصل ۲ هندسه مطرح شده است.

R=a/2SinA=b/2SinB=c/2SinC

نظرات (0)
نام :
ایمیل : [پنهان می ماند]
وب/وبلاگ :
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)